SOME NEW DECOMPOSITION THEOREMS

¹T. PRABAKARAN, ²V. SANGEETHASUBHA, ³N. SEENIVASAGAN AND ⁴O. RAVI

¹Department of Mathematics, Latha Mathavan Engineering College, Madurai, Tamil Nadu, India. e-mail : prabhakaran2611@gmail.com.

²Research Scholar, Bharathidasan University, Tiruchirapalli, Tamil Nadu, India. email: sangeethasubha11@gmail.com.

³Department of Mathematics, Government Arts College for Women, Nilakottai, Tamil Nadu, India. email: vasagan2000@yahoo.co.in.

⁴Controller of Examinations, Madurai Kamaraj University, Madurai, Tamil Nadu, India. email: siingam@yahoo.com.

Abstract. In 1968, N. V. Velic´ko [11] introduced the concepts of δ -closed sets, δ -open sets, δ -closure and δ -interior opertors in topological spaces. In [4], the con- cept of λ -closed sets was introduced. In this paper, α - δ w-open sets, pre- δ w-open sets, semi- δ w-open sets, strongly β - δ w-open sets and b- δ w-open sets in topological spaces are introduced and investigated. We introduce new classes of sets by using λ - δ w-closed sets in topological spaces and study their basic properties; and their connections with other types of topological sets. Furthermore, some new decomposition theorems are obtained.

1. Introduction and Preliminaries

By a space X, we always mean a topological space (X,τ) with no separation properties assumed. If $H\subseteq X$, cl(H) and int(H) will, respectively, denote the closure and interior of H in (X,τ) .

Key words and phrases. Weak structure space, δ -closed set, α - δ w-open set.

⁰2010 Mathematics Subject Classification: 54C10, 54C08, 54C05

Definition 1.1. [10] A subset H of a space X is said to be

(1) regular open if H=int(cl(H)). (2)

regular closed if H=cl(int(H)).

The complement of a regular open set is called regular closed.

Definition 1.2. A subset H of a space X is said to be

- (1) α -open [9] if $H\subseteq int(cl(int(H)))$.
- (2) preopen [8] if $H\subseteq int(cl(H))$.
- (3) semi-open [6] if $H \subseteq cl(int(H))$.
- (4) β -open [1] if $H \subseteq cl(int(cl(H)))$.
- (5) b-open [3] if $H\subseteq int(cl(H))\cup cl(int(H))$.

Definition 1.3. A subset A of a space X is called a Λ -set if $A=A^{\Lambda}$ where $A^{\Lambda}=\cap \{G: A\subseteq G \text{ and } G\in \tau\}$ [7].

Definition 1.4. A subset O of a space X is called λ -closed [4] if O=L \cap M, where L is a Λ -set and M is closed.

Proposition 1.5. [7] In a space X, every open set is a Λ -set but not conversely.

A point $x \in X$ is called a δ -cluster [11] of $H \subseteq X$ if $H \cap G = \varphi$ for each regular open set G containing x.

The set of all δ -cluster points of H is called the δ -closure of H and is denoted by $cl_{\delta}(H)$.

A subset H of a space X is called δ -closed if $cl_{\delta}(H)=H$.

The complement of a δ -closed set is called δ -open.

The collection of all δ -open subsets of X forms a topology τ_{δ} on X. Indeed $\tau_{\delta} \subset \tau$. Let A be a subset of a space X. Then

(1)
$$cl_{\delta}(X - A) = X - int_{\delta}(A)$$
. (2)

$$int_{\delta}(X - A) = X - cl_{\delta}(A)$$
.

Let us say that $w \subseteq \wp(X)$ is a weak structure (briefly WS) on X iff $\emptyset \in w$. Clearly each generalized topology and each minimal structure is a WS [5].

Each member of w is said to be w-open and the complement of a w-open set is called w-closed.

Let w be a weak structure on X and $H\subseteq X$. We define (as in the general case) $i_w(H)$ is the union of all w-open subsets contained in H and $c_w(H)$ is the intersection of all w-closed sets containing H [5].

Remark 1.6. [2] If w is a WS on X, then $i_w(\emptyset) = \emptyset$ and $c_w(X) = X$.

Theorem 1.7. [5] If w is a WS on X and $A,B \in w$ then

- (1) $i_w(A) \subseteq A \subseteq c_w(A)$,
- (2) $A \subseteq B \Rightarrow i_w(A) \subseteq i_w(B)$ and $c_w(A) \subseteq c_w(B)$, (3)

$$i_w(i_w(A))=i_w(A)$$
 and $c_w(c_w(A))=c_w(A)$,

(4)
$$i_w(X - A) = X - c_w(A)$$
 and $c_w(X - A) = X - i_w(A)$.

Let w be a WS on X and $H \subseteq X$. Then $H \in \alpha(w)$ [resp. $H \in \sigma(w)$, $H \in \pi(w)$, $H \in \beta(w)$, $H \in b(w)$] if $H \subseteq i_w(c_w(i_w(H)))$ [resp. $H \subseteq c_w(i_w(H))$, $H \subseteq i_w(c_w(H)) \cup c_w(i_w(H))$] [5].

2. Generalized δ w-open sets

Definition 2.1. Let w be a weak structure on a space X. A subset G of X is called

(1) pre- δ w-open if $G \subseteq i_w(cl_\delta(G))$. (2)

semi- δ w-open if $G \subseteq cl_{\delta}(i_w(G))$. (3) α -

 δ w-open if G ⊆ i_w(cl_δ(i_w(G)).

(4) strongly β-δw-open if $G \subseteq cl_{\delta}(i_w(cl_{\delta}(G)))$. (5)

b-δw-open if $G \subseteq i_w(cl_\delta(G)) \cup cl_\delta(i_w(G))$.

The complement of a pre- δ w-open (resp. a semi- δ w-open, an α - δ w-open, a strongly β - δ w-open, a b- δ w-open) set is called pre- δ w-closed (resp. semi- δ w-closed, α - δ w-closed, strongly β - δ w-closed, b- δ w-closed).

Definition 2.2. For a WS w on a space X and a subset G of X, the intersection of all pre- δ w-closed (resp. semi- δ w-closed, α - δ w-closed, strongly β - δ w-closed, b- δ w-closed) sets containing G is called the pre- δ w-closure (resp. semi- δ w-closure, α - δ w-closure, strongly β - δ w-closure, b- δ w-closure) of G and is denoted by $pcl_{\delta w}(G)$ (resp. $scl_{\delta w}(G)$, $\alpha cl_{\delta w}(G)$, $s\beta cl_{\delta w}(G)$, $bcl_{\delta w}(G)$).

Proposition 2.3. For a WS w on a space X, we have

- (1) Every w-open set is α - δ w-open.
- (2) Every α-δw-open is semi-δw-open. (3)Every α-δw-open set is pre-δw-open.
- (4) Every pre- δ w-open set is strongly β - δ w-open. (5) Every semi- δ w-open set is strongly β - δ w-open.
- Proof. (1) Let H be a w-open set. Then $H=i_w(H)$. Since $H\subseteq cl_\delta(H)$, $i_w(H)\subseteq cl_\delta(i_w(H))$ and $i_w(H)\subseteq i_w(cl_\delta(i_w(H)))\Rightarrow H\subseteq i_w(cl_\delta(i_w(H)))$. This shows that H is an α - δ w- open set.
 - (2) Let H be an α - δ w-open set. Then $H \subseteq i_w(cl_\delta(i_w(H))) \subseteq cl_\delta(i_w(H))$. This shows that H is a semi- δ w-open set.
 - (3) Let H be an α - δ w-open set. Then $H \subseteq i_w(cl_\delta(i_w(H))) \subseteq i_w(cl_\delta(H))$. This shows that H is a pre- δ w-open set.
 - (4) Let H be a pre- δ w-open set. Then $H \subseteq i_w(cl_\delta(H))$ and $cl_\delta(H) \subseteq cl_\delta(i_w(cl_\delta(H)))$. This shows that H is strongly β - δ w-open.
 - (5) Let H be a semi- δ w-open set. Then $H \subseteq cl_{\delta}(i_w(H)) \subseteq cl_{\delta}(i_w(cl_{\delta}(H)))$. This shows that H is a strongly β - δ w-open.

Remark 2.4. For several subsets defined above, we have the following implications. pre-

$$\delta w\text{-open set} \longrightarrow strongly \ \beta\text{-}\delta w\text{-open set}$$

$$\uparrow \qquad \qquad \uparrow$$

$$w\text{-open set} \longrightarrow \alpha\text{-}\delta w\text{-open set} \longrightarrow semi\text{-}\delta w\text{-open set}$$

The reverse implications are not true.

Example 2.5. Let $X=\{a, b, c, d\}$, $\tau=\{\emptyset, \{a\}, \{a, b, c\}, X\}$ and $w=\{\emptyset, \{b, c\}, \{a, c, d\}, X\}$. Then $\{a, b, c\}$ is an α - δ w-open set but it is not an w-open set.

Example 2.6. Let $X=\{a, b, c, d\}$, $\tau=\{\emptyset, \{d\}, \{a, c\}, \{a, c, d\}, X\}$ and $w=\{\emptyset, \{a\}, \{d\}, \{a, b, c\}, X\}$. Then $\{b, d\}$ is a semi- δ w-open set but it is not an α - δ w-open set.

Example 2.7. In Example 2.6, $\{c\}$ is a pre- δ w-open set but it is not an α - δ w-open set.

Example 2.8. In Example 2.6, $\{b, d\}$ is a strongly β - δ w-open set but it is not a pre- δ w-open set.

Example 2.9. In Example 2.6, $\{c, d\}$ is a strongly β - δ w-open set but it is not a semi- δ w-open set.

Remark 2.10. For a WS on a space X and a subset A of X, we have

$$\begin{split} &(1) \ \ pcl_{\delta w}(A) = A \ \cup \ c_w(int_{\delta}(A)). \ (2) \\ &scl_{\delta w}(A) = A \ \cup \ int_{\delta}(c_w(A)). \\ &(3) \ \ \alpha cl_{\delta w}(A) = A \ \cup \ c_w(int_{\delta}(c_w(A))). \ (4) \\ &s\beta cl_{\delta w}(A) = A \ \cup \ int_{\delta}(c_w(int_{\delta}(A))). \ (5) \\ &bcl_{\delta w}(A) = pcl_{\delta w}(A) \ \cap \ scl_{\delta w}(A). \end{split}$$

Definition 2.11. Let w be a WS on a space X. A subset A of X is called

(1) a
$$\Lambda_{\alpha w}$$
-set if $A = \Lambda_{\alpha w}(A)$ where $\Lambda_{\alpha w}(A) = \bigcap \{G : A \subseteq G \text{ and } G \in \alpha(w)\}$. (2) a Λ_{sw} -set if $A = \Lambda_{sw}(A)$ where $\Lambda_{sw}(A) = \bigcap \{G : A \subseteq G \text{ and } G \in \sigma(w)\}$. (3) a Λ_{pw} -set if $A = \Lambda_{pw}(A)$ where $\Lambda_{pw}(A) = \bigcap \{G : A \subseteq G \text{ and } G \in \pi(w)\}$. (4) a $\Lambda_{\beta w}$ -set if $A = \Lambda_{\beta w}(A)$ where $\Lambda_{\beta w}(A) = \bigcap \{G : A \subseteq G \text{ and } G \in \beta(w)\}$. (5) a Λ_{bw} -set if $A = \Lambda_{bw}(A)$ where $\Lambda_{bw}(A) = \bigcap \{G : A \subseteq G \text{ and } G \in b(w)\}$.

Definition 2.12. Let w be a WS on a space X. A subset K of X is called

(1) a $C_{\delta w}$ -set if $K = L \cap F$, where L is open and F is a pre- δw -closed set in X. (2) a $BC_{\delta w}$ -set if $K = L \cap F$, where L is open and F is a b- δw -closed set in X. (3) an $\eta_{\delta w}$ -set if $K = L \cap F$, where L is open and F is an α - δw -closed set in X.

Definition 2.13. Let w be a WS on a space X. A subset K of X is called

- (1) λ - δ w- α -closed if $K = L \cap F$, where L is a Λ -set and F is an α - δ w-closed set. (2) a $DC_{\delta w}$ -set if $K = L \cap F$, where L is open and F is a semi- δ w-closed set.
- (3) a sFC $_{\delta w}\text{-set}$ if $K=L\cap F,$ where L is open and F is a strongly $\beta\text{-}\delta w\text{-}$ closed

set.

Lemma 2.14. Let w be a WS on a space X. Then the following statements hold. (1) Every α - δ w-closed set is λ - δ w- α -closed.

(2) Every Λ -set is λ - δ w- α -closed.

Example 2.15. Let $X = \{a, b, c\}, \tau = \{\emptyset, X, \{a\}, \{a, b\}\}\$ and $w = \{\emptyset, \{a, b\}, X\}$. Then

- (1) {a} is λ - δ w- α -closed but not α - δ w-closed. (2)
- {c} is λ - δ w- α -closed but not a Λ -set.

Lemma 2.16. For a WS w on a space X and a subset A of X, then the following conditions are equivalent.

- (1) A is λ - δ w- α -closed.
- (2) $A = L \cap \alpha cl_{\delta w}(A)$ where L is a Λ -set. (3)

 $A=A^{\Lambda}\,\cap\,\alpha cl_{\delta w}(A).$

Lemma 2.17. For a WS w on a space X, the following statements hold. (1)

Every open set is an $\eta_{\delta w}$ -set.

(2) Every α - δ w-closed set is an $\eta_{\delta w}$ -set.

Example 2.18. In Example 2.15,

(1) $\{c\}$ is an $\eta_{\delta w}$ -set but not open.

(2) $\{a,b\}$ is an $\eta_{\delta w}$ -set but not an α - δw -closed.

Lemma 2.19. Let w be a WS on a space X. Then every $\eta_{\delta w}$ -set is λ -δw-α-closed.

Proposition 2.20. Let w be a WS on a space X. Then the concepts of

- (1) α -open sets and α - δ w-open sets are independent.
- (2) semi-open sets and semi- δ w-open sets are independent. (3) preopen sets and pre- δ w-open sets are independent.
- (4) β -open sets and strongly β - δ w-open sets are independent. (5) b-open sets and b- δ w-open sets are independent.

Example 2.21. Let $X = \{a, b, c\}, \tau = \{\emptyset, X, \{b\}, \{c\}, \{b, c\}\}\$ and $w = \{\emptyset, \{a\}, \{b, c\}\}.$ Then

- (1) {a} is an α - δ w-open set but it is not an α -open set. (2)
- {b} is an α -open set but it is not an α - δ w-open set.

Example 2.22. In Example 2.21,

- (1) {a} is a semi- δ w-open set but it is not a semi-open set. (2)
- $\{b\}$ is a semi-open set but it is not a semi- δ w-open set.

Example 2.23. In Example 2.21,

- (1) {a} is a pre- δ w-open set but it is not a preopen set. (2)
- $\{b\}$ is a preopen set but it is not a pre- δ w-open set.

Example 2.24. In Example 2.21,

- (1) {a} is a strongly β - δ w-open set but it is not a β -open set. (2)
- {b} is a β -open set but it is not a strongly β - δ w-open set.

Example 2.25. In Example 2.21,

- (1) {a} is a b- δ w-open set but it is not a b-open set. (2)
- {b} is a b-open set but it is not a b- δ w-open set.

Definition 2.26. Let w be a WS on a space X. A subset A of X is said to be

(1) $\delta w_{\alpha g}$ -closed if $\alpha cl_{\delta w}(A) \subseteq U$ whenever $A \subseteq U$ and U is open. (2) δw_{gs} -closed if $scl_{\delta w}(A) \subseteq U$ whenever $A \subseteq U$ and U is open. (3) δw_{gs} -closed if $pcl_{\delta w}(A) \subseteq U$ whenever $A \subseteq U$ and U is open. (4) δw_{gsp} -closed if $s\beta cl_{\delta w}(A) \subseteq U$ whenever $A \subseteq U$ and U is open. (5) δw_{gb} -closed if $bcl_{\delta w}(A) \subseteq U$ whenever $A \subseteq U$ and U is open.

Lemma 2.27. Let w be a WS on a space X. A subset $A \subseteq X$ is $\delta w_{\alpha g}$ -closed if and only if $\alpha cl_{\delta w}(A) \subseteq A^{\Lambda}$.

Theorem 2.28. For a WS w on a space X and a subset A of X, the following conditions are equivalent.

- (1) A is α - δ w-closed.
- (2) A is $\delta w_{\alpha g}$ -closed and an $\eta_{\delta w}$ -set.
- (3) A is $\delta w_{\alpha g}$ -closed and λ - δw - α -closed.

Proof. (1) \Rightarrow (2) and (2) \Rightarrow (3): Obvious.

(3) ⇒ (1) : Since A is $\delta w_{\alpha g}$ -closed, by Lemma 2.27, $\alpha cl_{\delta w}(A) \subseteq A^{\Lambda}$. Since A is λ -δw-α-closed, by Lemma 2.16, $A = A^{\Lambda} \cap \alpha cl_{\delta w}(A) = \alpha cl_{\delta w}(A)$. Hence A is α-δw- closed.

Remark 2.29. The following example shows that the concepts of $\delta w_{\alpha g}$ -closed sets and $\eta_{\delta w}$ -sets are independent of each other.

Example 2.30. (1) In Example 2.15, {a} is an $\eta_{\delta w}$ -set but not $\delta w_{\alpha g}$ -closed. (2) In Example 2.15, {a, c} is $\delta w_{\alpha g}$ -closed but not an $\eta_{\delta w}$ -set.

Remark 2.31. The following example shows that the concepts of $\delta w_{\alpha g}$ -closed sets and λ - δw - α -closed sets are independent of each other.

Example 2.32. (1) In Example 2.15, {a} is λ - δ w- α -closed but not δ w_{α g}-closed. (2) In Example 2.15, {a, c} is δ w_{α g}-closed but not λ - δ w- α -closed.

Definition 2.33. Let w be a WS on a space X. A subset K of X is called

- (1) λ - δ w-semi-closed if $K = L \cap F$, where L is a Λ -set and F is semi- δ w-closed. (2) λ - δ w-pre-closed if $K = L \cap F$, where L is a Λ -set and F is pre- δ w-closed
- (3) λ - δ w- β -closed if $K = L \cap F$, where L is a Λ -set and F is strongly β - δ w-closed. (4) λ - δ w- β -closed if $K = L \cap F$, where L is a Λ -set and F is β - δ w-closed.

Lemma 2.34. Let w be a WS on a space X. A subset $A \subseteq X$ is

(1) δw_{gs} -closed if and only if $scl_{\delta w}(A) \subseteq A^{\Lambda}$. (2)

 $\delta w_{gp}\text{-closed}$ if and only if $pcl_{\delta w}(A)\subseteq A^{\Lambda}.$ (3)

 δw_{gsp} -closed if and only if $s\beta cl_{\delta w}(A) \subseteq A^{\Lambda}$. (4)

 δw_{gb} -closed if and only if $bcl_{\delta w}(A) \subseteq A^{\Lambda}$.

Corollary 2.35. For a WS w on a space X and a subset A of X, the following conditions are equivalent.

- (1) (i) A is semi- δ w-closed.
 - (ii) A is δw_{gs} -closed and a DC_{δw}-set.
 - (iii) A is δw_{gs} -closed and λ - δw -semi-closed.
- (2) (i) A is pre-δw-closed.
 - (ii) A is δw_{gp} -closed and a $C_{\delta w}$ -set.
 - (iii) A is δw_{gp} -closed and λ - δw -pre-closed.
- (3) (i) A is strongly β-δw-closed.
 - (ii) A is δw_{gsp} -closed and a sFC $_{\delta w}$ -set. (iii)

A is δw_{gsp} -closed and λ - δw - β -closed.

- (4) (i) A is b- δ w-closed.
 - (ii) A is δw_{gb} -closed and a BC_{δw}-set. (iii)

A is δw_{gb} -closed and λ - δw -b-closed.

Proof. The proof is similar to that of Lemma 2.16 and Theorem 2.28.

Remark 2.36. The following examples show that the concepts of

- (1) δw_{gs} -closed sets and $DC_{\delta w}$ -sets are independent of each other.
- (2) δw_{gs} -closed sets and λ - δw -semi-closed sets are independent of ech other. (3) δw_{gp} -closed sets and $C_{\delta w}$ -sets are independent of each other.
- (4) δw_{gp} -closed sets and λ - δw -pre-closed sets are independent of each other. (5) δw_{gsp} -closed sets and sFC $_{\delta w}$ -sets are independent of each other.
- (6) δw_{gsp} -closed sets and λ - δw - β -closed sets are independent of each other. (7) δw_{gb} -closed sets and $BC_{\delta w}$ -sets are independent of each other.
- (8) δw_{gb} -closed sets and λ - δw -b-closed sets are independent of each other.
- Example 2.37. (1) In Example 2.15, {a} is a $DC_{\delta w}$ -set but not δw_{gs} -closed. (2) In Example 2.15, {a, c} is δw_{gs} -closed but not a $DC_{\delta w}$ -set.
- Example 2.38. (1) In Example 2.15, {a} is λ - δ w-semi-closed but not δ w_{gs}-closed. (2) In Example 2.15, {a, c} is δ w_{gs}-closed but not λ - δ w-semi-closed.
- Example 2.39. Let $X=\{a, b, c\}$, $\tau=\{\emptyset, \{b\}, \{c\}, \{b, c\}, X\}$ and $w=\{\emptyset, \{a\}, \{b, c\}, X\}$. Then
 - (1) {b} is a $C_{\delta w}$ -set but not δw_{gp} -closed.
 - (2) $\{a,b\}$ is δw_{gp} -closed but not a $C_{\delta w}$ -set.
- Example 2.40. (1) In Example 2.39, {b} is λ - δ w-pre-closed but not δ w_{gp}-closed. (2) In Example 2.39, {a, b} is δ w_{gp}-closed but not λ - δ w-pre-closed.
- Example 2.41. (1) In Example 2.39, {b} is a sFC $_{\delta w}$ -set but not δw_{gsp} -closed. (2) In Example 2.39, {a, b} is δw_{gsp} -closed but not a sFC $_{\delta w}$ -set.
- Example 2.42. (1) In Example 2.39, {b} is λ - δ w- β -closed but not δ w_{gsp}-closed. (2) In Example 2.39, {a, b} is δ w_{gsp}-closed but not λ - δ w- β -closed.
- Example 2.43. (1) In Example 2.39, $\{b\}$ is a $BC_{\delta w}$ -set but not δw_{gb} -closed. (2) In Example 2.39, $\{a,b\}$ is δw_{gb} -closed but not a $BC_{\delta w}$ -set.
- Example 2.44. (1) In Example 2.39, $\{b\}$ is λ - δ w-b-closed but not δ w_{gb}-closed.

(2) In Example 2.39, {a, b} is δw_{gb} -closed but not λ - δw -b-closed.

Definition 2.45. Let w be a WS on a space X. A subset A of X is called

(1) λ - δ w- α g*-closed if $A = L \cap F$, where L is a $\Lambda_{\alpha w}$ -set and F is δ -closed. (2) λ - δ w-sg*-closed if $A = L \cap F$, where L is a Λ_{sw} -set and F is δ -closed. (3) λ - δ w-pg*-closed if $A = L \cap F$, where L is a Λ_{pw} -set and F is δ -closed. (4) λ - δ w- β g*-closed if $A = L \cap F$, where L is a $\Lambda_{\beta w}$ -set and F is δ -closed. (5) λ - δ w-bg*-closed if $A = L \cap F$, where L is a Λ_{bw} -set and F is δ -closed.

Definition 2.46. Let w be a WS on a space X. A subset A of X is called

(1) an δw -alc-set if $A = L \cap F$ where $L \in \alpha(w)$ and F is δw -closed. (2) an δw -slc-set if $A = L \cap F$ where $L \in \sigma(w)$ and F is δw -closed.

Lemma 2.47. Every $\Lambda_{\alpha w}$ -set (resp. Λ_{sw} -set, Λ_{pw} -set, Λ_{bw} -set, Λ_{bw} -set) is λ -δw- αg^* - closed (resp. λ -δw-sg*-closed, λ -δw-pg*-closed, λ -δw-βg*-closed, λ -δw-bg*-closed).

Example 2.48. In Example 2.39, {c} is λ - δ w- α g*-closed but not a $\Lambda_{\alpha w}$ -set.

Example 2.49. In Example 2.39, {b} is λ - δ w-sg*-closed but not Λ _{sw}-set.

Example 2.50. Let $X = \{a, b, c\}$, $\tau = \{\emptyset, X, \{b\}, \{c\}, \{b, c\}\}$ and $w = \{\emptyset, X, \{b\}, \{b, c\}\}$. Then $\{a\}$ is λ - δw -pg*-closed but not a Λ_{pw} -set.

Example 2.51. In Example 2.50, {c} is λ - δ w- β g*-closed but not $\Lambda_{\beta w}$ -set.

Example 2.52. In Example 2.50, {a} is λ - δ w-bg*-closed but not Λ _{bw}-set.

Lemma 2.53. For a WS w on a space X and a subset A of X, the following conditions are equivalent.

- (1) A is λ - δ w- α g*-closed.
- (2) $A = L \cap cl_{\delta}(A)$ where L is a $\Lambda_{\alpha w}$ -set. (3)

 $A = \Lambda_{aw}(A) \cap cl_{\delta}(A)$.

References

- [1] M. E. Abd El-Monsef, S. N. El-Deeb and R. A. Mahmoud, β-open sets and β-continuous mappings, Bull. Fac. Sci. Assuit Univ., 12(1983), 77-90.
- [2] A. Al-Omari and T. Noiri, A unified theory of generalized closed sets in weak structures, Acta Math. Hungar., 135(1-2)(2012), 174-183, doi: 10.1007/s10474-011-0169-0. [3]
- D. Andrijevic', On b-open sets, Mat. Vesnik, 48(1996), 59-64.
- [4] F. G. Arenas, J. Dontchev and M. Ganster, On λ-sets and the dual of generalized continuity, Questions Answers Gen. Topology, 15(1)(1997), 3-13.
- [5] A´. Csa´sza´r, Weak Structures, Acta Math. Hungar., 131(1-2)(2011), 193-195, doi:10.1007/s10474-010-0020-z.
- [6] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70(1963), 36-41.
- [7] H. Maki, Generalized Λ-sets and the associated closure operator in special issue in commemo- ration of Prof. Kazusada IKEDA's Retirement, (1986), 139-146.
- [8] A. S. Mashhour, M. E. Abd El-Monsef and S. N. El-Deeb, On precontinuous and weak pre continuous mappings, Proc. Math. and Phys. Soc. Egypt, 53(1982), 47-53.
- [9] O. Njastad, On some classes of nearly open sets, Pacific J. Math., 15(1965), 961-970.
 [10] M. H. Stone, Applications of the theory of Boolean Rings to General Topology, Trans. Amer. Math. Soc., 41(1937), 375-481.
- [11] N. V. Velic'ko, H-closed topological spaces, Amer. Math. Soc. Transl., (2), 78(1968), 103-118.